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Numerous reports from several parts of the world have confirmed that on calm clear
nights a minimum in air temperature can occur just above ground, at heights of the
order of 3 m or less. This phenomenon, first observed by Ramdas & Atmanathan
(1932), carries the associated paradox of an apparently unstable layer that sustains
itself for several hours, and has not so far been satisfactorily explained. We formulate
here a theory that considers energy balance between radiation, conduction and free
or forced convection in humid air, with surface temperature, humidity and wind
incorporated into an appropriate mathematical model as parameters. A complete
numerical solution of the coupled air—soil problem is used to validate an approach
that specifies the surface temperature boundary condition through a cooling rate
parameter. Utilizing a flux-emissivity scheme for computing radiative transfer, the
model is numerically solved for various values of turbulent friction velocity. It is
shown that a lifted minimum is predicted by the model for values of ground
emissivity not too close to unity, and for sufficiently low surface cooling rates and
eddy transport. Agreement with observation for reasonable values of the parameters
is demonstrated. A heuristic argument is offered to show that radiation substantially
increases the critical Rayleigh number for convection, thus circumventing or
weakening Rayleigh—-Bénard instability. The model highlights the key role played by
two parameters generally ignored in explanations of the phenomenon, namely
surface emissivity and soil thermal conductivity, and shows that it is unnecessary to
invoke the presence of such particulate constituents as haze to produce a lifted
minimum.
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1. Introduction

2 Nearly 60 years ago Ramdas & Atmanathan (1932) reported temperature
= > measurements at Poona and three other Indian stations showing that, on calm clear
olm nights, air may be cooler than ground by a few degrees at heights ranging up to about
(=4 g 1 m (figure 1). The report caused considerable surprise for several reasons. First of all
SSNE) it went counter to the prevailing view that following sunset a temperature inversion
O always develops at ground. This view has apparent support from normal observations
=w of air temperature (see Sutton 1953, p. 190), but it must be remembered that such
- observations usually stop at the standard screen height of 4 ft (~ 1.22 m). Even
§% below this height, however, while rapid ground cooling after sunset may be expected
== Phil. Trans. R. Soc. Lond. A (1993) 344, 183-206 © 1993 The Royal Society
8 2 6 Printed in Great Britain ) 183

9‘2 9 Vol. 344, A (16 August 1993)
EF

CHY
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to SO

Philosophical Transactions: Physical Sciences and Engineering. MIKOIY
WwWw.jstor.org


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY 4

PHILOSOPHICAL
TRANSACTIONS
OF

A

A \

/an \

A
y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

184 A. 8. Vasudeva Murthy, J. Srinivasan and R. Narasimha

! | | i ! | | 1 I ! !
T

220
—200
? 180
160
140
~120

-1100

Height /m
Height / cm

80

60

40

20

0
12 13 14 15 16 17T 18 6 7T 8 9 10°%C

Temperature/T —=

Figure 1. Temperature profiles with lifted minimum, as reported by Ramdas & Atmanathan
(1932). I, Poona, 29 Nov 1931, 0600 h; II, Agra, 29 Nov 1931, 0503 h.

(by diffusion and mixing) to cause similar cooling in the air layers closest to ground,
there is no obvious reason why air temperature should fall below that at ground.
Secondly, a temperature minimum above ground should lead to Rayleigh-Bénard
instability, so it is not clear how it can be sustained for several hours (virtually till
sunrise, as Ramdas and others reported), even assuming that it had arisen as some
transient. Finally, as Raschke (1957) discusses, accurate temperature measurements
near ground are not easy to make. Indeed, Geiger (1965, p. 93) remarks in his classic
work The climate near the ground, ‘These results were at first accepted with some
reservations, since similar conditions might be arrived at if cold air had flowed in
from the environs, as from the radiative cooling of the surface of a plant’ —in spite
of the fact that further work by Ramdas and others (e.g. Ramanathan & Ramdas
1935) had led to the conclusion that the effect was not due to advection and not
peculiar to any locality. It was perhaps the eventual confirmation by Lake (1956a)
and Raschke (1957) that removed remaining doubts about the phenomenon. In
particular Raschke made careful and extensive measurements in Poona using
specially constructed radiation-compensated thermoelements (Raschke 1954), and
reported very similar observations in particular from the bare and remarkably flat
top of Chaturshringi Hill, where advection could not have been present. Since then
it has been discovered that, contrary to the implicit suggestion of Ramdas &
Atmanathan (1932), the phenomenon is not by any means confined to the tropics;

Phil. Trans. R. Soc. Lond. A (1993)
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The lifted temperature minimum 185

confirmatory reports have come from many parts of the world, including England
(Lake 19564, b), Canada (Oke 1970), U.S.A. (Fleagle & Badgley 1952) and in many
other countries cited by Geiger (1965).

It has been suggested by a referee that the lifted temperature minimum may have
been observed by Glaisher (1847). This paper includes tables that indicate that
‘temperature one inch high above grass’ was less than that ‘on short grass’ by up to
a degree or two. There is no discussion by Glaisher of this point, and it is not clear
why the former temperature should not be compared with that on ‘long grass’. At
any rate these observations are more likely to be connected with what Oke (1970) has
called the ‘grass-tip minimum’, rather than Ramdas’s observations over bare soil:
the mechanisms in the two cases are different, as discussed by Oke.

There has been no completely satisfactory explanation so far of the lifted
temperature minimum phenomenon observed by Ramdas. Radiation has often been
thought to be responsible in some way (Lake 1956a, b; Coantic & Seguin 1971;
Kondratyev 1972) but advocates for convection have not been wanting (Lettau
1979). The only quantitative analysis of the problem is due to Zdunkowski (1966),
who followed up a suggestion by Moller that a haze layer above ground could lead
to the strong radiative cooling that might explain the phenomenon. However, the
theoretical temperature profiles presented by Zdunkowski were based on values of
thermal diffusivity lower than the molecular value by a factor of up to 18; no results
were presented for sufficiently high values of the diffusivity. In this respect these
results recall a calculation made by Ramdas & Malurkar (1932) who also had to
assume very low diffusivities (factor of 22) to reproduce the observed steep
temperature gradients near the surface (even in the absence of a lifted minimum).
Furthermore, no evidence has yet been reported of a possible haze layer when the
lifted minimum occurs, e.g. in the careful and exhaustive measurements of Oke
(1970), who was aware of Zdunkowski’s theory. Finally, in Zdunkowski’s results (e.g.
in his figs 3 and 5) the minimum, when found, is rather flat, and takes the form of
a nearly isothermal layer whose top coincides with the assumed upper edge of the
haze layer, suggesting that the discontinuity in the modelled emissivity profile may
at least in part be responsible for the prediction of the lifted minimum.

One fact from observation provides a useful clue. Raschke (1957), in his Poona
experiments of 29 December 1954 over bare soil, measured wind speeds close by, and
found that a lifted minimum appeared almost as soon as wind speed at 20 cm above
ground dropped below 0.5 m s™*, but disappeared when the speed was higher, or
when a wooden lath was waved nearby (we may think of the flow as being ‘tripped’
by this procedure). Oke (1970) observed the lifted minimum often on bare soil, but
‘harrowed soil showed only infrequent and uncertain indications of its development’.
It seems clear therefore that it would not take much turbulent diffusion or soil
roughness to suppress the phenomenon.

Similarly, cloud-free skies seem necessary ; Ramdas & Malurkar (1932) report that
with overcast conditions temperature distributions near ground are substantially
different, and in particular that the gradients are much lower.

It has long been suggested that radiation, and especially its absorption and
emission by water vapour (and to a lesser extent carbon dioxide: the other
constituents of air are virtually transparent to the infrared wavelengths charac-
teristic of terrestrial radiation), could play a strong role in determining temperature
distributions near ground (Ramdas & Malurkar 1932 ; Ramanathan & Ramdas 1935;
Goody 1964). If this were so, however, the mechanism involved in the formation of

Phil. Trans. R. Soc. Lond. A (1993)
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a lifted minimum must be subtle, as we may see by considering the two obvious
limiting cases of strong and weak absorption. In the former case we may say that the
photon mean free path, which is inversely proportional to the absorption (see
Vincenti & Kruger 1965, p. 445), is very small. In this limit a flux-gradient relation
should hold, but then radiation merely makes an additive contribution to other
diffusive transport; the resulting parabolic equation cannot in general account for
the lifted minimum (Vasudeva Murthy et al. 1991; Appendix A). If on the other hand
absorption is weak, there would be no radiative cooling or heating, and once again
one would be unable to explain a lifted minimum. The effect of radiation therefore
demands careful analysis. In particular, we must note that the absorption coefficient
of water vapour varies strongly and in a very complicated way with frequency of
radiation, and the values listed, e.g. by Kondratyev (1969, p. 118), show that photon
mean free paths vary from less than 10 m at wavelengths of 5.5-7 pm or 27 pm and
above, to the order of 1-10 km over most of the so-called atmospheric window in the
8-14 pm band. Neither of the two limits mentioned above is therefore strictly
justified.

The temperature distribution near ground may be of some importance in
agricultural and horticultural applications: it affects the formation of fog and dew
(Monteith 1957) and the occurrence of frost; Lake (1956a) quotes studies showing
how tomato plants spread out on bare soil start freezing from the top. The
phenomenon should also be important for retrieval of correct surface temperatures
from remotely sensed radiation data.

In the rest of this paper we formulate the basic equations governing the problem
adopting a suitable radiation model, and solve the resulting equations numerically
after identifying the appropriate non-dimensional parameters. The nature of the
solutions, and the physical mechanisms responsible for the occurrence of the lifted
minimum, are then discussed. Finally the parameter values that are necessary for the
occurrence of the phenomenon are delineated.

2. The energy equation

We consider calm, clear nights with no advective changes. Further, to avoid
unnecessary complexity we shall assume that radiative absorption characteristics
and the wind profile (needed to assess the possible effects of any residual turbulence)
may be incorporated into the model as parameters; we shall discuss the surface
temperature variation separately in §4. It is then a reasonable approximation to take
the air temperature 7' as homogeneous in the horizontal plane, so that it is a function
only of time ¢ and the vertical coordinate z (figure 2). The problem is then completely
governed by the one-dimensional energy equation, which may be written

pa, 0T/l = —0Q /2, (2.1)

where p, is the density of air, ¢, is the specific heat at constant pressure and @) is the
total energy flux, conveniently split into three components representing respectively
the contributions of molecular conduction (§,,), convection (¢, or ¢, depending on
whether free or forced) and radiation (¢),). The molecular conduction term is simply
given by

Q= —ky, 0T /02, (2.2)

where k., is the thermal conductivity of air. In free convection thermal transport is

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 2. A schematic showing the nature of the temperature distribution under conditions of
lifted minimum.

enhanced, and we shall find it sufficient for our purposes to take @, as a multiple of

@m

where Nu may be thought of as a Nusselt number, to be assumed known as a function
of the appropriate Rayleigh number Ra, in the light of the extensive experimental
data available (e.g. Hollands et al. 1975). If convection is in the forced (turbulent)
regime, we shall assume that a suitable eddy conductivity k, can be defined and

replace @), by the term
Q. =—k,00/0z, O0=T+1I%, (2.4)

where 6 is the potential temperature, I" being the adiabatic lapse rate
(=9.86 Kkm™ in dry air). Considerable work has been done on eddy diffusion

in stratified flow (see Haugen 1973), suggesting that the thermal diffusivity K, =
ki/p,c, can be represented in the surface layer as

Ky = ky Uy 2(Ri), (2.5)
where k, is the von Karman constant, U, is the friction velocity and
. k% g2? (00
ri =202 (S) (2.6)

is a Richardson number appropriate to turbulent flow in the surface layer, which is
governed by the ‘wall’ variables U, and z (g is the acceleration due to gravity).
Among the many proposals made for the function ¢, we find it adequate for the
present purpose to adopt the relations

P(Ri) = 1.35(1—9 Ri): for Ri < 0,
=1.35(1+6.35Ri)™ for Ri > 0; (2.7)

these are based on the data of Businger et al. (1971) and have been widely used (see
Liou & Ou 1983). Relations (2.7) are simple to use, and also satisfy the inequality

¢+ Ridp/ORi > 0, 2.8)
Phil. Trans. R. Soc. Lond. A (1993)
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which ensures that the evolution equation for the temperature is governed by a
parabolic equation (see Appendix A). The terms ), and ¢, are included chiefly to
assess the role of convection in determining the intensity of the phenomenon; as we
shall find that the role is not strong, a more elaborate modelling of these modes of
energy transfer is not worthwhile.

The evaluation of the radiant energy flux is now considered separately.

3. The radiation model

It is a well established fact that during clear nights and in the absence of haze and
other particles, the infrared cooling in the lowest 2 km of the atmosphere is chiefly
due to water vapour (Liou 1980, p. 109). There are conditions (e.g. over snow) when
the carbon dioxide content of air is also of some importance ; this can when necessary
be taken into account by a suitable enhancement of the flux emissivity of air (to be
introduced below), along lines discussed by Liou (1980). The discussion below could
be more generally worded in terms of a specified variation of the flux emissivity of
air with height, the contributions of all constituents (water vapour, carbon dioxide,
etc.) being explicitly taken into account in arriving at that specification. To avoid
inessential complexity in the discussion, however, we shall find it convenient to speak
of water vapour only, as it does constitute the dominant radiative absorber in
general : modifications to include the effect of carbon dioxide are trivial.

Further, as we shall demonstrate below, the radiative cooling of air near the
surface is strongly influenced by the emissivity of the ground. This factor has to be
taken into account in any reasonable model for the energy balance near the ground.

By our assumption of horizontal homogeneity we need to consider radiative
transfer only in the vertical direction. The net longwave radiative flux @, can then

be written as
Q. =F'—F, (3.1)
where F'', F* are the upward and downward fluxes.

It is convenient to compute the radiative flux divergence in terms of the
differential mass path length Au of the absorbing gas (water vapour in the present
instance) along a differential path Az; this is given by Au = p,, Az, where p,, is the
density of water vapour. Accounting for the effect of pressure variation on the
absorption process in the manner suggested by Houghton (1986, p. 172), the
corrected water vapour mass path length is taken as

_(F [PV,
u(z) = fo Pw(z ){p(O)} dz’, (3.2)

where p(z) denotes the pressure of air at level z and 8 (chosen empirically) lies in the
range 0.5 < d < 1. A § of 0.9 (as recommended by Garrat & Brost (1981)) was taken
for the present study.

We use the broadband flux emissivity method (Rodgers & Walshaw 1966; Liou
1980; Garrat & Brost 1981; Liou & Ou 1983), which expresses the fluxes as

FYu) = Juw o, 1) ( —uydur, (3.3)

’
w du

F'(u) = {6, oT4(t)+ (1 —¢,) F*(0)} {1 —e(u)}—Ju oT(w, 1) de (w—w')du’, (3.4)

du’
Phil. Trans. R. Soc. Lond. A (1993)
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Figure 3. Variation of flux emissivity as a function of water vapour path length according to the
formula of Zdunkowski & Johnson (1965), compared (in the inset) with the theoretical slope at the
origin computed in Appendix B.

where u,, = u(00) is the total atmospheric path-length, ¢, is the emissivity of ground,
T,(t) is the ground temperature and e(u) is the broadband flux emissivity function of
water vapour, given by

e(u) = ;74 Jw {1 —exp (—ky(A)w)} B,(T)dA. (3.5)

g

Here «,(A) is the spectral absorption coefficient of water vapour at wavelength A and
By(T) = (2h/2%c?) [exp (h/Akg T)—1]7" (3.6)

is the well-known Planck’s function in which 4 is Planck’s constant, ¢ is the velocity
of light and ky, is the Boltzmann constant. An essential feature of the method is that
e(u) is taken to be independent of 7'; the reason is that over the relatively narrow
range of temperatures encountered within the planetary boundary layer (and
a fortiori near the ground) the influence of 7' on e(u) is negligible (Liou 1980, p. 111).
Equation (3.4) is usually written assuming ¢, = 1, and it is crucial for the present
study that we consider the case when ¢, # 1, as we shall show below.
The function e(u) (shown in figure 3) is taken as

e(u) = 0.049021n (1 +1263.5u) foru < 1072kg m™2,
=0.056241In (1 +875u) for u > 1072 kg m™?; (3.7)

these expressions were originally proposed by Zdunkowski & Johnson (1965), and
considered to apply up to w=0.5kgm™ In actual fact (3.7) is in excellent
agreement with other expressions in use for larger u, such as that of Atwater (1974),
used recently by Grisogno (1990): at v = 8 kg m™2, (3.7) gives ¢ = 0.498, Atwater

Phil. Trans. R. Soc. Lond. A (1993)
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gives 0.504. Furthermore at large u the energy balance in the atmospheric boundary
layer is determined more by turbulence than by radiation, so results are not sensitive
to the precise values of ¢ adopted.

Note the steep increase in e near w = 0 displayed in figure 3; we shall find it
convenient to think of the region u < 107® kg m™ as constituting an ‘emissivity
sublayer’ because of this rapid variation. An inset in figure 3 shows ¢ for very small
u; the derivative ¢'(u) at w = 0, which plays an important role in the present theory,
is 61.9 m? kg™ according to (3.7). We have preferred (3.7) to other candidate
expressions (e.g. Coantic & Seguin 1971) for the present study mainly because the
above value of ¢'(0) agrees well with the theoretical value, which is 62.9 m? kg™
(Appendix B). Furthermore, Corradini & Severini (1975), carrying out experiments
in a 50 m® chamber in the laboratory, found good agreement between the measured
values of temperature and those calculated with the radiative contribution
determined by using the expression (3.7) for ¢(u). For all these reasons (3.7) should
be entirely adequate for the present model.

4. Boundary conditions

We shall in general take the initial condition at { =0 as corresponding to a
constant lapse rate I,
T(2,0) = Tyo— 1z, (4.1)

but some solutions with other initial conditions will also be presented.

For handling the boundary conditions at ground (z = 0), we pursue two different
paths. In the absence of wind, the temperature at ground after sunset is determined
by energy balance between radiation and heat flux from the soil:

or

kt@(

0,t)—F" = kg%((), ty—Fv, (4.2)
0z
where kg is the thermal conductivity of the soil and 7, is its temperature, governed

by the conduction equation

0T, s
pscsa—t‘=k5?, 2 <0, (4.3)

where pg is the density of the soil while ¢, is the specific heat of the soil. The
initial /boundary conditions are taken to be

1i(2,0) = Ty, (4.4)
1, _
(= 00,0) = 0. (4.5)

By solving (4.3) together with (2.1) and (4.2) one can derive the temperature
distribution in air as well as soil, and the ground temperature Ty(t) at z = 0 will also
come out as a part of the solution.

We adopt the above procedure and demonstrate the solutions so obtained, but we
shall find that there is an alternative but equivalent approach that is simpler and
easier to interpret. This approach is based on the well-known work of Brunt (1941),
who showed that to a good approximation the problem of determining ground

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 4. Comparison of observed ground temperature variation with (4.6).

temperature can be reduced to that of heat conduction in the soil subject to a
constant flux boundary condition at the surface. This leads to the result that the
ground temperature can be expressed as (see also Kondo 1971)

To(t) = Too— V1, (4.6)

where the parameter #, to be called the ‘cooling rate’ here for the sake of simplicity
(despite the fact that its units are K h~), depends inversely on the square root of the
thermal conductivity of the soil, k. This approach not only allows us to use a simple
boundary condition at z =0 but also enables us to parameterize soil conductivity
through . Furthermore this also avoids the need for providing a prescription of the
initial temperature distribution (4.4) in the soil as no measurements of soil
temperature are available under conditions of a lifted minimum. Finally equation
(4.6) represents observed ground temperature distributions very well: an example is
provided in figure 4, where the measurements of Raschke (1957) are seen to be well
fitted by (4.6) with 7, = 298.5 Kand f = 425 K h~2. Most of the solutions we present
below are obtained using the boundary condition (4.6), but in §7¢ we shall
demonstrate that results so obtained are in excellent agreement with those using
(4.2)~(4.5). These results have certain implications for Brunt’s theory and for the
important problem of prediction of ground temperature variation with time, which
will be pursued separately.

Solution of the energy equation also demands a top boundary condition, which we
take to be

orT

corresponding to a uniform lapse of the temperature with height (cf. figure 2).
Adopting the language of matched asymptotic expansions, we may look upon this

Phil. Trans. R. Soc. Lond. A (1993)
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relation as the condition that matches an inner solution near the surface (over the
emissivity sublayer mentioned above and discussed further in the next section) with
an outer solution away from the surface characterized by a uniform lapse rate. Such
an asymptotic approach to a solution of the present problem will be presented
elsewhere.

5. Dimensional analysis

The dimensional parameters which are relevant to the present problem can be
conveniently listed as

Cp = PoCp; 0Ty, Tyo, ;K Uy, 9,€'(0), I’

where o is the Stefan—-Boltzmann constant and p, = p,(0) is the value of the air
density at the surface.
We first note the existence of a radiative length scale in the problem,

L=1€(0)pyq] ™ (5.1)

where g, = p,,(0)/p,; this is clearly a measure of the thickness of what we have called
the emissivity sublayer above.

Five independent non-dimensional quantities can be formed from the above list;
these are chosen here to be

O pVE, o U o UL I p

Bo oI, Re K, Fr R A T’ T= VK. go. (56.2)—(5.6)
The parameter Bo, which is seen to be a measure of the ratio of the loss of heat in the
emissivity sublayer to the radiative flux from the ground, can be thought of as a
‘surface’ Boltzmann number. Re is a Reynolds (more precisely Peclet) number and
Fr a Froude number, both based on the emissivity sublayer thickness ! and the
friction velocity U,. The parameters A and 7 are respectively a non-dimensional lapse
rate and a surface cooling rate. To get an appreciation of the order of magnitude
of these parameters, take T, = 300 K, g, = 0.01, U, = 0(0.01) m 57" (see §7c ) and
B=0@2Kh™); using the standard values (Oke 1987) K, =2.5x10°m? g™,
po=12kgm™, ¢, =102J kg7’ K™ and o =5.67x10°W m_2 K™, we obtain
l~1.35m,

Box~10™%, Rex~5x10% Frax~10° A~x~10"% and 7=~1072

The low value of the Froude number shows that gravity effects are negligible, and the

modest value of the Reynolds number (for the assumed U, ) suggests that turbulence

may not play a significant role: the viscous sublayer (usually taken as extending to

about 10 wall units above the surface) would have a thickness of about 2.5 cm for the

assumed value of U,. The influence of the other parameters will be discussed later.
The energy equation can now be non-dimensionalized to read

E)fl_’ a 5 aT 1 oF
with the initial and boundary conditions discussed in §4 taking the form
Tis - . oT
T(z,0)= Az, T(0,f) =/, = (00,0) = A, (5.8a—c)
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where

z=z/l, I=tK, /P, u=¢0)u, T=Tp—T)/7T.

Since Bo is small, equation (5.7) implies that the timescale of evolution of the
temperature is O(Bo) in the non-dimensionalization adopted, or O(I2/K,, Bo) in
physical units. Given the order of magnitude of Bo and other non-dimensional
parameters in the problem, it is natural to ask whether perturbation methods can be
used ; as already stated, this question will be considered separately, our present aim
being to establish the physical validity of the model for describing the lifted
minimum. We therefore proceed to a full numerical treatment of the problem.

6. Numerical solution

The equation derived in the last section is solved here numerically by spatial
discretization in the vertical. For this purpose the upper boundary condition is
specified at L = 1 km this height, which at first sight may seem rather large as the
phenomenon of interest occurs within 1 m above the ground, is chosen so as not to
leave room for doubt about accounting accurately for radiation with long photon
mean free paths. Because of the resulting wide disparity in scales we cannot afford
to divide the atmosphere into horizontal layers of equal height. Instead a fine mesh
is chosen near the ground and a coarse mesh near the top. The actual mesh size
selected was 1 cm between 0 and 1 m, 20 cm between 1 m and 10 m, 200 cm between
10 m and 100 m and 2 m between 100 m and 1000 m. The equation is solved by the
method of lines (see Graney & Richardson 1981), which results in a set of 250 coupled
ordinary differential equations for the evolution of temperature in each layer. This
system is solved using readily available oDE software; details may be found in
Vasudeva Murthy et al. (1991), where it is also demonstrated that the above choice
of mesh size provides a solution accurate to 0.01 K in the lowest metre of the
atmosphere. The equations have to be solved to relatively high accuracy levels, as
the balance between different terms in the energy equation is delicate.

When the soil conduction equation (4.3) is solved, the lower boundary condition
is specified at z = —0.5 m. This depth is sufficient for the present purpose as it is well
known (Oke 1987, p. 47) that the daily surface temperature wave is only discernible
to a depth of 0.75 m for all types of soils. The mesh size in this case was taken to be
2 cm.

7. Results and discussion
(@) Radiation only

To unravel the mechanism governing the lifted minimum phenomenon, it is
expedient to consider at first radiation as the only heat transfer process. We will later
include conduction and turbulence to study their interaction with radiation. In these
numerical experiments we shall adopt, for purposes of illustration, the values T, =
300K, =2Kh, ¢ = 0.9 and g, = 0.01; the effect of varying these parameters will
be discussed in §9.

The evolution of temperature in this case over a period of 2 h after sunset is shown
in figure 5. Arrows pointing up denote the temperature of the ground while those
pointing down denote the temperature of air just above the ground. We observe that
in the solutions at 1 and 2 h presented in the figure, air next to ground is about 3 K
cooler than ground. This discontinuity arises from the well-known radiation slip
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Figure 5. Evolution of temperature profiles under the influence of radiation alone
(e, =09, f=2Kh™ ¢q,=0.01).

effect and is basically due to long mean-free-path photons. Kondo (1971) has also
shown the existence of radiative slip, but in his case the ground was at a lower
temperature than air above it. For a given ground cooling rate, the magnitude of this
radiative slip, defined here as [7,(t)—7(0+,¢)], depends strongly on ground
emissivity, as shown in figure 6.

As the radiative cooling near ground plays a key role in the lifted minimum
phenomenon, it is worthwhile examining the mechanism responsible for it. To
simplify matters, let us set the temperature 7'(z,{) = const., say 7j; then the flux
divergence, computed from (3.3) and (3.4), becomes

0Q,/0u = aTi[(1 —€g) (1 —6,,) €' (u) + €' (U, —u)]. (7.1)

Now if ¢, or €, is identically unity, the first term in (7.1) (the contribution from the
upward flux F') drops out. For small » the second term is approximately € (u.,),
which is very low for large u,, (see figure 3), and so is also negligible. Hence the
radiative flux divergence is nearly zero for air layers close to ground, which therefore
experience little cooling and remain almost at the same temperature. However,
following (4.6), the ground would have cooled to a lower temperature, giving a
negative radiative slip. On the other hand if ¢, and ¢, are not too close to unity the
first term in (7.1) contributes significantly near ground, because of the large
magnitude of €'(0) ; hence the air layers could cool to a temperature below that of the
ground producing a positive radiative slip.
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Figure 6. Variation of radiative slip with emissivity of the ground (§ = 2 K h%, ¢, = 0.01).
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Figure 7. Computed temperature profiles under the influence of radiation and molecular
conduction for heights below 35 m and 1 m (inset). Other parameters same as in figure 5.

Because of the strong role that ¢, plays in the present theory, it is necessary to
discuss its value. It is often assumed to be unity, although compilations such as
Paltridge & Platt (1976, p. 135) show that it can be rather less. Indeed Paltridge &
Platt point out that the assumption that e, = 1 poses problems that are not minor,
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Figure 8. Computed temperature profiles in the lowest metre 2 h after sunset (¢ = 0), at different
values of the friction velocity U,, without allowing for the effect of stratification on eddy

diffusivity. Other parameters same as in figure 5.

in particular because the numbers in their compilation ‘refer to vertical emissivities
appropriate to remote measurement of temperature by vertically oriented radio-
meters on spacecraft. The meterologically significant quantity is the global or flux
emissivity which for natural surfaces may be much less’. Work on engineering
surfaces has established that the global (also called hemispherical) emissivity is
about 10 % less than the normal emissivity (see, for example, Siegel & Howell 1982).
Although no corresponding result is available for natural surfaces, a similar factor
will presumably apply. Thus it is reasonable to assume that the global emissivities
of natural surfaces will lie in the region 0.8-0.9. We shall in the following consider the
range of variation of ¢, relevant to the present study to be 0.8-1.0, which is also the

range adopted by Garrat & Brost (1981).

(b) Effect of molecular conduction

We consider next how the inclusion of pure molecular conduction (but no eddy
transport) modifies the temperature profile with radiative slip. The evolution of
temperature profiles for 2h after sunset, with the same boundary and initial
conditions and parameters as before (but with conduction included), is shown in
figure 7a, b. We find that a temperature minimum appears at a height of 15 cm above
the ground, and is 1.5 °C below ground temperature. Clearly conduction smears out
the discontinuity observed in figure 5.
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Figure 9. Computed temperature profiles in the lowest metre 2 h after sunset at different values of
U,, with allowance for stratification on eddy diffusivity. Other parameters same as in figure 5.

(¢) Effect of turbulence

We consider first the effect of introduction of turbulence without allowing for
stability effects, i.e. we set ¢ = 1 in (2.5). To estimate the likely range of values of U,,
we recall the observation of Oke (1970) that during the occurrence of the lifted
minimum the wind velocity at a height of 25 cm was in the range of 37-105 cm s™*.
This provides a very rough estimate of U, as being in the range 2-5 cm s™ if we

assume that the velocity follows the classic logarithmic profile
Uz) = Uy In (2/2,) [ by (7.2)

(where z, is the roughness height, ca. 0.01 cm for flat bare soil). We shall therefore
take a value of Uy, = 0.1 m s as the upper limit of our range of interest. At U, =
1073 m s7! the viscous sublayer will have a thickness of about 25 cm, which is
comparable to the usually observed height of the lifted minimum, so for U, less than
10*m s™ heat transfer is virtually dominated by molecular conduction. It is
therefore seen that the relevant range of U, is 107107 m s™.

Temperature profiles at ¢t = 2k for Uy, = 107, 1072 and 107 m s™* are shown in
figure 8 for z less than 1 m. By comparison with figure 7 it is seen that turbulent
transport warms the air, and that the structure of the lifted minimum is progressively
lost as U, increases till the temperature profiles take the form seen on most nights.
For the values of ¢, and f# chosen, the temperature minimum is on the verge of
disappearance as U, exceeds 0.01 m s™.
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Figure 10. Computed temperature profiles obtained by solving the air-soil equations for various e,
(full line); x denotes temperature profiles computed with Brunt’s boundary condition at e, = 0.9.

Next we include the stability function ¢(£¢) and perform a similar exercise. These
profiles are shown in figure 9, and are not substantially different from the previous
case.

Finally in figure 10 we show temperature distributions obtained by solving the
coupled soil-air problem (equations (2.1), (4.2) and (4.3) with p, = 1600 kg m™3, ¢, =
890 J kg™' K" and k, = 0.25 W m™" K™*) for different values of ¢,. As ¢, approaches
unity the minimum get weaker. This is consistent with the above results.
Furthermore these temperature profiles are in excellent agreement with those
computed by using Brunt’s boundary condition (4.6). This is demonstrated in figure
10 for the case ¢, = 0.9; the value of § used in this computation was obtained by
fitting (4.6) to the variation of 7, predicted by the full coupled air-soil model. This
clearly establishes the validity of the present approach to specifying the boundary
condition at ground through the parameter g in (4.6).

8. Discussion and comparison with observations

Although there are now numerous observations of the lifted minimum, these rarely
report the precise initial and boundary conditions; in particular the ground
emissivity and the friction velocity at the time of measurement have never been
estimated. In these circumstances, the best we can do is to make reasonable
estimates for ¢, and U, along lines already discussed, and offer illustrative
comparisons. For this purpose we select the data of Ramanathan & Ramdas (1935),
who provide good initial and boundary conditions on the temperature under wind
conditions stated to have been calm (so we shall assume U, =~ 0 as a first
approximation). The temperature profile reported at 1800 h (local time) is taken here
as the initial condition. Measured surface temperature variation soon after sunset
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Figure 11. Comparison of temperature profiles according to present theory (full line, no eddy
diffusion) with the observations (0,att =0; x,att =1h; o, att = 2 h) of Ramanathan & Ramdas
(1935). Computations for ¢, = 0.8, # ="7.5 Kh™" and ¢, = 0.01.

suggests f = 7.5 K h™%, In figure 11 the prediction of the model with this value of 4,
and assuming ¢, = 0.8 and U, = 0, is compared with observations. We find that the
numerical simulation is able to predict closely the temperature profile in the lowest
metre of the atmosphere. Because of residual uncertainties associated with the values
of the various parameters involved we should not perhaps consider the agreement
shown in figure 11 as definitive, but there can be no doubt whatever that the theory
predicts the right kind of behaviour.

As already pointed out, the temperature profiles predicted by the present theory
(fore, =09, =2K h~%) do not exhibit a lifted minimum if U, is much greater than
about 0.01 m s™'. At this condition the eddy diffusivity K, at a height of 25 cm (as
estimated from (2.5)) is around four times the molecular diffusivity K, . The extreme
sensitivity of the lifted minimum to the presence of turbulence that we predict here
is supported by the observations of Raschke (1957). Reporting simultaneous
measurements over smooth and bare soil surfaces, Oke (1970) remarks that ‘... the
flat soil exhibits the raised minimum at all times, at a height of 2.5-25 cm above the
surface, but the harrowed soil showed only infrequent and uncertain indications of
its development. The raised minimum never rose above 2.5 cm and (7;,—7},;,) never
exceeded 0.2C, even with wind speeds as low as 40 cm s7'’. Taking U, at this wind
speed to be about 2 cm s7 and a length scale characteristic of the harrowed surface
as at least 1 cm, the relevant roughness Reynolds number is about 15, which shows
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the surface would be aerodynamically rough (see e.g. Schlichting 1955, p. 454) and
could be expected to promote at least local turbulence. It is possible that a
contributing factor of the rougher surface was the slightly higher global emissivity
due to radiative reflection among the roughnesses.

We still need to discuss the possibility of free convection in the layer below the
lifted minimum. A Rayleigh number based on the height to the temperature
minimum z,;, and the temperature differential

A71min = Tg(t) - T(zmin’ t)

takes a value of about 10° for z,;, = 20 cm, AT}, = 1 K. As this is well above the
usually cited critical values of Rayleigh—Bénard instability the question arises of how
the apparently unstable layer sustains itself for hours (almost till sunrise, in fact). We
must, however, note that a stability analysis valid for the unusual free boundary
condition at the top of the Ramdas layer is not available. A plausible explanation is
that radiative transfer stabilizes this layer and raises the critical Rayleigh number
Ra, substantially. Goody (1964), Christophorides et al. (1970) and Vincenti &
Traugott (1971) have shown that in a grey gas the critical Rayleigh number varies
from its classical value for optically thin conditions to a value some three orders of
magnitude higher in the optically thick limit. This extraordinary increase is easy to
understand physically, for in an optically thick gas energy transport obeys a flux-
gradient relationship, and a radiative diffusivity K. can be defined; the medium
therefore behaves like one with a thermal diffusivity of K.+ K, , and the critical
value of Ra goes up by the ratio 1+K,/K,, which can be considerable. Although
some work on a quasi-grey gas has been reported by Arpaci & Gozum (1973), no
detailed analysis seems to have been made of a situation more directly relevant to the
present problem, which involves a non-grey gas and a semi-infinite geometry with
non-monotonic temperature profiles. Nevertheless a rough estimate of the effect of
radiation on Ra, can be made using the formula (Goody 1956, p. 359; Vincenti &
Traugott 1973, p. 112)

min

Ra, ~ Rag(diff) {1 + s/ trag},

where Ra (diff) is the classical value (i.e. when molecular diffusion alone is present)
while ¢4; and ¢,4 denote diffusion and radiation time constants. In the present
problem these may be taken as

tdiff = zrznin/Km? trad = cp{o-Tgo 6/(0)}_1’

where {4 is derived by examining the non-dimensional radiative flux divergence
near the ground. Taking z,,;, = 20 cm and 7T}, = 300 K we obtain #4;; ~ 1600 s and
taa = 11 8. If we take the cooling rate (7.1) as more relevant, the estimated ¢,,4 will
go up by the factor [(1—e¢,) (1—¢,)]™", which is of the order 10. We thus see that Ra,
can be increased by a factor of somewhere between 10 and 150 under these
conditions. While further work on stability is required to determine Ra, more
precisely under conditions corresponding to the lifted minimum, there are clearly
strong reasons for believing that radiative stabilization is the chief reason for the
persistence of an apparently unstable layer near the ground.

A second reason is the relatively slow increase in heat transfer rates at super-
critical Rayleigh numbers. Asymptotic analysis shows that Nu ~ Ra? in the limit of
large values of Ra. A comprehensive survey of experimental data on heat transfer
between parallel plates, undertaken by Hollands et al. (1975), indicates that a
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Figure 12. Variation of predicted height of temperature minimum
with cooling rate (e, = 0.9, ¢, = 0.01).

Nusselt number of 4 (which, by the results already cited, is the kind of value at which
eddy transport may be expected to be sufficiently strong to destroy the lifted
minimum) is attained only at a value of Ra nearly 60 times larger than critical.

We thus see that the heavier fluid at the lifted minimum can be maintained
without completely overturning either solely due to radiative stabilization or in
combination with the very modest increase in heat transfer even at large super-
critical Rayleigh numbers.

9. Parametric study

The quantities that we shall study are the location of the minimum z,;, and the
associated ‘intensity’ A7) ;.. From the discussion in §7, it will clearly be no great loss
to restrict ourselves to the radiation-conduction model, ignoring eddy transport
(@, = @, = 0). The parameters involved are then 8, Bo, A, 7 and ¢,. Figures 12 and
13 show the variation of z,;, and A7), respectively as functions of the above
parameters for ¢, = 0.9; both quantities go to zero as f increases. We see that to
observe a lifted minimum of at least 1 K above ground with emissivity 0.9 the ground
cooling rate should not exceed around 4 K h™%. Equivalently neither Bo nor A should
exceed about 1072 (cf. §5). From the definition (5.2) of Bo this implies that the
radiative energy flux should be at least 10® times a characteristic thermal diffusive
flux. The low value of the parameter 72 shows in a different way that the surface
cooling rate should be sufficiently low.

We now vary e, fixing 8, Bo, A and 7. The variation of z,;, and AT}, is shown in
figures 14 and 15.
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Figure 13. Variation of predicted minimum temperature with cooling rate.
Other parameters same as in figure 12.

Contours of constant z,;, and A7}, in the (., #) plane are shown in figures 16 and
17. Note that as ¢, increases we need lower cooling rates to observe a lifted minimum.
Also in these figures the region where z,,,;, and A7} ;, are greater than 30 cm and 3 K
respectively is very small, thus demonstrating that a lifted minimum at a higher
location or with greater intensity is unlikely. Most observations of the lifted
minimum support this prediction (Oke (1970) quotes one instance with z,;, =
50 cm). Curiously, the Poona measurement in the very first report of Ramdas &
Atmanathan shows a deep minimum at a height of about a metre, perhaps as a result
of drainage of cold air from the environs as the authors themselves suspected ; but the
Agra data, as well as the later measurements of Ramanathan & Ramdas (1935), are
consistent with the present theory as well as other later observations.

The maps in figures 16 and 17 can be used to predict the lifted minimum
phenomenon if estimates for ¢, and § are available.
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Figure 14. Variation of predicted height of temperature minimum with ground emissivity
(B=2Kh=, g, =0.01).

Figure 15. Variation of predicted minimum temperature with ground emissivity. Other parameters
same as in figure 14.
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Figure 16. Contours of constant z,,, as predicted by the present theory (g, = 0.01).

Figure 17. Contours of constant AT, as predicted by the present theory (g, = 0.01); there is no
lifted minimum above the curve labelled 0.

10. Conclusions

In the present work we have proposed a theory for the lifted minimum
phenomenon in the atmosphere above bare soil on calm clear nights, without
invoking phase transition in water vapour (such as fog, snow, rain or haze). The
theory leads to a partial integro-differential equation that describes the energy
balance between thermal diffusion and infrared radiation in the presence of water
vapour, and highlights the key role played by two parameters, namely the ground
emissivity and the surface cooling rate (or, equivalently, the soil conductivity).
While the importance of soil conductivity has occasionally been noted (in particular
by Raschke (1957)), the profound effect that even a small departure of the surface
emissivity from unity can have has not been realized: the present work shows how
a surface that is not perfectly black (radiativeiy) can substantially influence the
radiative cooling near the surface. The extremely rapid variation of the absorptivity
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of water vapour to infrared radiation at small path lengths, in what we have called
the emissivity sublayer, provides a length ¢.ale of the order of a metre that
characterizes the phenomenon. Comparison with observation shows reasonable
agreement, and has encouraged us to present, in the plane of the most important
parameters in the problem, maps that can be used to predict when the lifted
minimum occurs.

The present theory predicts that the temperature minimum is weaker if the ground
isrough (which promotes turbulent diffusion and has higher emissivity) or radiatively
dark (decreases aircooling), or if the soil is insulating (increases surface cooling rate).
Controlled experiments in which these parameters are varied seem feasible and
worthwhile in view of possible applications in agriculture and horticulture.

Further theoretical work is needed to interpret the phenomenon more directly in
terms of radiative transfer in different bands of the absorption spectrum, to provide
an appropriate perturbation analysis, and to assess more precisely the effect of
radiation on convective instability under conditions corresponding to observed near-
ground temperature distributions.

Appendix A
If we expand (2.1) using (2.2) and (2.4)—(2.7) we obtain
a0 . 0 | |0%0

This equation is parabolic if the quantity in [] is positive. On the other hand if it
is negative it would be equivalent to solving the heat conduction equation backwards
in time, which is well known to be ill-posed. Clearly if inequality (2.8) holds then the
above equation is parabolic and consequently well-posed.

Appendix B

The quantity ¢’(0) plays an important role in the present analysis of the lifted
minimum phenomenon (see (5.1)). The e(u) used in the present work (equation (3.7))
is based on laboratory measurements of infrared radiation transmission through a
given path length u. Unfortunately it is difficult to measure transmission for path
lengths below 1072 kg m~2; ¢(u) has therefore generally been prescribed empirically in
this region, leading to widely different values of ¢’(0) among the available proposals.
Thus Coantic & Seguin’s (1971) expression for e(u) gives €'(0) & 27 m® kg™, whereas
(3.7) gives €'(0) = 61.9 m? kg™*. In this appendix we shall calculate ¢'(0) from the
available spectral data.

From (3.5) we obtain

1 0
6‘/(0) = '0—-7—14J‘ Kw(/\)B/\(T) d/\,

which can be approximated by the sum

1 Ay +AA;
€'(0) = Z;ﬁﬁ Kw(A) By(T) dA, (A1)

where AA; is the width of the spectral interval (A;,A;+AA,) such that «, can be
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considered to be a constant (= k,;) within the interval. Using this approximation we
obtain

6/(0) 5 2 Kwifi(T)> (A 2)
where SilT) = fo(As+ AN, T) = fo (A, T),

1 (M
oA, T) = WJO B,(T)dA.

The values of «,,; for the various water vapour bands are given in Liou (1980). The
spectral data for the rotation and the vibration-rotation bands are based on the
statistical band model of Goody, while for the 8-12 pm band they are based on the
data of Roberts, Selby & Biberman (Liou 1980, p. 108). The values of f,(A;, T') are
well tabulated in Siegel & Howell (1972, p. 739). Using these data in (A 2) we obtain
€'(0) ~ 62.9 m? kg™

The authors are grateful to Professors J. L. Monteith and J. V. Lake for illuminating discussions.
A.S.V.M. thanks Dr S. Kesavan for his valuable advice.
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